Factoring Polynomials over Global Fields

نویسندگان

  • KARIM BELABAS
  • MARK VAN HOEIJ
  • JÜRGEN KLÜNERS
  • ALLAN STEEL
چکیده

We prove polynomial time complexity for a now widely used factorization algorithm for polynomials over the rationals. Our approach also yields polynomial time complexity results for bivariate polynomials over a finite field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lecture on the Complexity of Factoring Polynomials over Global Fields

This paper provides an overview on existing algorithms for factoring polynomials over global fields with their complexity analysis from our experiments on the subject. It relies on our studies of the complexity of factoring parametric multivariate polynomials that is used for solving parametric polynomial systems in our PhD thesis. It is intended to be useful to two groups of people: those who ...

متن کامل

A New Algorithm for Factoring Polynomials Over Finite Fields

We present a new probabilistic algorithm for factoring polynomials over finite fields.

متن کامل

Factoring Polynomials over Finite Fields: Asymptotic Complexity vs. Reality

Several algorithms for factoring polynomials over nite elds are compared from the point of view of asymptotic complexity, and from a more realistic point of view: how well actual implementations perform on \moderately" sized inputs.

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008